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Diagonal tensor flux approximations are commonly used in fluid dynamics. This
approximation introduces an O(1) error in flux whenever the coordinate system is
nonaligned with the principal axes of the tensor which is particularly common when
employing curvilinear gridding. In general a consistent full tensor flux approximation
leads to a significant increase in support and consequent size of the Jacobian matrix.
After decomposition of a general full tensor flux into a diagonal tensor flux together
with cross terms, time-split semi-implicit, stable, full tensor flux approximations are
introduced with in a general finite volume formalism, enabling the standard diagonal
tensor Jacobian matrix structure to be retained for single phase flow, IMPES, and
standard block fully implicit formulations while ensuring spatial consistency of the
discretization for both structured and unstructured grids. Stability of the scheme
is proven for constant elliptic coefficients. The results presented demonstrate the
benefits of the method for multiphase flow within a fully implicit framework on
structured and unstructured gridsg 2000 Academic Press

Key WordsM-matrix; flux continuous; locally conservative; finite volume; aniso-
tropic; tensor; 9 point; discontinuous coefficients; flux splitting; unstructured.

1. INTRODUCTION

Diagonally dominant M-matrices are obtained for the most common and fundame
discrete operators that occur in numerical approximation of partial differential equatic
Classical examples result from the use of first-order upwind schemes for hyperbolic sys
and standard five-point schemes (in 2-D, 7 in 3-D) that are used for approximatior
Laplacian and diagonal tensor diffusion operators; e.g., [1, 2]. Approximation of full ten:
operators introduces additional cross terms that cause the support of the scheme (an
the matrix bandwidth) to be increased while unconditional diagonal dominance is redu
to being at best conditional or completely lost [3].
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2 MICHAEL G. EDWARDS

Perhaps the most common example of a full tensor in fluid dynamics is due to the us
nonorthogonal and/or unstructured grids, which cause off-diagonal terms to appear ir
flow equations. For example, when discretizing systems of equations that describe flo
porous media, which is the main focus of this paper, or incompressible Euler and Nav
Stokes equations, the support of a full tensor pressure equation typically increases a
that of the standard scheme on a logical Cartesian grid from 5 to 9 nodes in 2-D and from
19 or 27 nodes in 3-D, and therefore represents a potentially large increase in computat
cost, as the pressure field is recalculated at every time step of the flow calculation.

Full tensor approximation is a particularly important issue for flow in porous med
[3-20]. A major assumption in most commercial simulators is that the flux depends ©
diagonal tensor and that the consequent discretizations employ minimal five- and se
node operators. The design and efficiency of such codes are intrinsically linked to
diagonal tensor assumption. However, this assumption is true only if the computatic
grid is aligned with the principal axes of the tensor.

In general a full tensor arises in reservoir simulation whenever (a) the medium
anisotropic and the local frame of reference is nonaligned with the principal axes [Z
(b) nonorthogonal and/or unstructured grids are employed [3-19], and (c) fine scale cr
flow upscaling is performed, particularly for cross-bedding [21]. Consequently all diago
tensor simulators will suffer from inconsistent O(1) errorsin flux [4, 7, 10—-12] when appli
to cases involving these major features. In particular, while these simulators appear to ¢
for nonorthogonal grids through the definition of corner point geometry, only the diago
tensor flux permeability—geometry contribution is included, which leads to an O(1) erro
flux (even for Laplaces equation) on a nonorthogonal grid [7].

The focus of this paper is on the development of finite volume schemes that emy
spatially consistent full tensor fluxes while retaining standard diagonal tensor matrix
reduced Jacobian matrix inversion.

The flow equations are given in Sections 2 and 3. In Section 4 it is shown that each of
full tensor fluxes as defined by the schemes presented in [3—8, 10-17] in a block-cent
point-distributed, or cellwise constant coefficient finite volume context can be decompo
into a two-point diagonal tensor flux with a coefficient that is defined via a consiste
factorization of the scheme together with cross terms. It is also shown that the fluxes o
formulations can be expressed in an analogous discrete form; this observation is expl
in Sections 6 and 7, where the simpler cellwise constant coefficient schemes are us
contrast the effects of matrix splitting and flux splitting on discrete error, conservation, ¢
stability.

The conditions required for a full tensor discretization to generate an M-matrix e
summarized in Section 5. Split schemes are first considered at the matrix level in Sectic
and the properties of the resulting preconditioning techniques are noted.

Semi-implicit split fluxes are defined for each type of finite volume scheme in Sectior
The split fluxes are composed of a fully implicit two-point diagonal tensor flux togeth
with explicit cross-flow terms. The resulting split flux generalizes the deferred correct
IMPES type schemes of [7] to semi-implicitgeneral scheme framework, enabling full
tensor operators to be incorporated istandard fully implicit formulatiorwhile retaining
the standard block Jacobian two-point flux matrix and thus resulting in gains in efficier
while only requiring minimal code changes. An error analysis demonstrates that se
implicit flux splitting formally introduces an error of ordext, which is confirmed in a
convergence study. A stability analysis is also presented for the case of the split single-p
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pressure equation and demonstrates unconditional stability for spatially constant ell
coefficients.

The split flux schemes are extended to triangular grids in Section 8, generalizing
split schemes to both structured and generally unstructured grids composed of quadrile
and/or triangular grid cells.

The semi-implicit schemes are applied to a number of porous media two phase |
problemsin Section 9, involving strong cross flow due to the orientation of the grid relative
the problem; benefits of the method are clearly demonstrated for structured and unstruc
grids while the large time step advantages of a fully implicit formulation are maintainec

2. THE FLOW EQUATIONS

Reservoir simulation and (environmental) aquifer remediation involve solving a coup
system of essentially hyperbolic conservation laws (for fluid transport) and an elliptic
parabolic equation for the pressure. The coupling between the equations is via the
velocity, which is defined by Darcy’s law to be proportional to the pressure gradient.

Without loss of generality in terms of the numerical method’s applicability, the schen
presented here are illustrated with respect to simplified two-phase incompressible
models, with unit porosity, and where gravity, capillary pressure, and diffusion are neglec

The continuity equation for each phape-1, ..., Ny (hereNp = 2) is written as
aS;
/(a—t'—i—v-vj)dr =mj(X,Y), (2.1)
Q

where the integral is taken over domanandV = (dy, dy) . The jth phase saturatios)

is defined by the ratio of phase volumgto pore volumerp, with s; = ;/7p,, andm; can
be a specified phase flux. Since the pore volume must always be filled by the fluids pre
this gives rise to the volume balance

D s =1 (2.2)

The momentum equations are defined through Darcy’s law, where
vj=—AjKV® (2.3)

is the jth phase velocityK can be dull rock permeability tensoip is the pressure, and
the jth phase mobility is given by

A =kij(sj)/mj, (2.4)
whereuj andk;; are the respective phase viscosity and relative permeability. An equat
for pressure can be derived by summation of Eq. (2.1) over the phases and using (2.2) tc

Np Np

/(V-VT)drz/—V- KZA,-V@ dr:ijzm(x,y), (2.5)
Q Q =1 i=1

whereVr is the total sum of phase velocities amdis the net flux. Neumann boundary

conditions apply on boundad&2 and require zero flux on solid walls together with reflec

tion conditions for saturations s. Inflow—outflow conditions apply at wells where fluxes
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prescribed together with Dirichlet conditions for s, and pressure must be specified at |
at one point. Initial data in terms of saturation/concentration and pressure fields are
prescribed. Further details can be found in [1].

3. GENERAL ELLIPTIC TENSOR EQUATION

We shall temporarily consider the single-phase pressure equation (variant of Eq. (
expressed as

—/V-(KVCD)drzm(x, y). (3.1)
Q

The matrixK can be a diagonal or full Cartesian tensor with the general form

K= (K““ K“’g>, (3.2)
Kap  Kpp
where off-diagonal Cartesian terms can be due to cross-bedding and/or upscaling [21].
tensorK (x, y) can be discontinuous across internal boundarieQ,cdnd the full tensor
pressure equation is assumed to be elliptic suchl(ljgtg Koo Kpp.
In this work the pressure equation is defined in a general curvilinear coordinate sys
defined with respect to a uniform dimensionless transform sgaoeg. For an arbitrary

control volumeQc with boundaryd Q¢ and surfaces that are tangential to constant)
(replacing2 with Q¢), Eq. (3.1) is integrated ovec via the Gauss flux theorem to yield

A:F 4+ A,G=m(X, y), (3.3)

where A F and A,G are the respective differences in net flux with respecgtay).
Resolving the components of velocity along the unit normals to the curvilinear coordine
(&, n) gives rise to the general tensor flux components

F=-— /(TaaCDg + Tap®,) dn, G=-— /(Tabcbg + Top®,) dg, (3.4)
§Qc §Qc

where the general tensrhas canonical coefficients defined by

Taa = (Kaay5 + Kﬂﬁxs — 2Kaﬁx,]y,])/‘]
Top = (Kaay§ + KﬂﬁX§ — 2Ka5ng5)/J (3.5)
Tap = (Kaﬂ(xéyyy + X, Ye) — (Kaaygy,, + Kﬂf;Xan))/J

andJ(x, y) =Xy, — X, Ye. Thus any scheme applicable to a full tensor also applies to a
curvilinear grid independent of the grid orthogonality. EllipticityTofollows from elliptic-

ity of Eqg. (3.2), and by Eq. (3.5) even a diagonal anisotropic cartesian tensor also leads
full tensor on a curvilineaorthogonalgrid. The general tensdrexpresses a certain duality
between the geometry and permeability, with geometry and physical space Cartesian
meability combined into a general tensor that can be viewed as a transformed permeal
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FIG.1. Dualvariable scheme, control volume, and flux calculation. Cell vertex flow variable, cellwise const
tensor (shaded). (a) Dashed line, surface of control volume(b) Cellwise flux locationdN, S, E, W.

with respect to a uniform (Cartesian) grid. For example, upscaling can be performed \
respect to the general tensor [16], which shows that geometry and permeability effects
be treated in an equivalent fashion.

4. FINITE VOLUME FORMULATIONS

The finite volume schemes considered in this work are either

(a) dual variable cell vertex based with flow variables located at cell vertices wh
the rock permeability tensor is piecewise constant over each cell (Fig. 1) or

(b) control-volume distributed such that flow variables and rock properties, e.g., r
permeability tensor, share the same location within the control volume (Fig. 2; the sha
indicates constant permeability); this includes both the traditional cell-centered schi
where the control volume is taken to be the grid cell and flow and rock variables are loc:
at the cell center (velocity is cell face centered), and point distributed (i.e., vertex cente

a izl i1,j+1

FIG. 2. Control volume distributed scheme, control volume, and flux calculation. Cell vertex flow variab
constant tensor per control volume (shaded). (a) Dashed line, surface of control vojur(t® Cellwise fluxes
N, S, E, W. (c) Subcell triangle basis for flux continuity.
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such that flow variables and the rock permeability tensor are located at cell vertices ant
piecewise constant over each cell vertex control volume.

In this section it is shown that the fluxes resulting from the two formulations can
expressed in an analogous discrete form and that each flux can be decomposed i
leading diagonal tensor two-point operator with a coefficient that is defined via a consis
factorization of the scheme together with cross terms.

While the focus here is on cell vertex/point-distributed schemes, the methods prese
have also been developed for cell-centered formulations by translating the operations
a grid that is essentially the dual mesh.

To fix ideas, finite volume discretizations will be defined with respect to grid verte
control volumes. For vertek j the control volume is defined by joining cell centers tc
the cell edge midpoints of those edges that are attached t6,thgh vertex (Figs. 1b
and 2b) and as a result, each quadrilateral is subdivided into four quadrants, with e
quadrant forming part of the control volume associated with the corresponding cell ver
consequently, each control volume is generally composed of a polygon.

In the two types of discretization considered, the flow variables are always located at
grid vertices, and the fluxes are assembled in a cellwise fashion. For a given cell, a flL
calculated along the normal to each control volume face inside the cell (Figs. 1b and
leading to the four fluxes

FN\+1/2,]+1/2 ’ F3+1/2,j+1/2 > FE\+1/2,j+1/2 ’ FWl +1/2.+1/2 (4 1)

per quadrilateral, where suffixég S, E, W indicate the north, south, east, and west quadr:
ture locations. The fluxes are distributed to their adjacent cell edges, which are interse
by the control volume faces. In 2-D each cell edge is intersected by one (if a boundary
two control volume faces. In this way the finite volume scheme is assembled via summa
of net edge-based fluxes,

Fi+1/2~,i = FNi+1/2,j—1/2 + F5+1/2.j+1/2’ Fi,j+1/2 = FEi—l/Z,j+1/2 + FWi+1/2,j+1/2' (42)

Finally, the discrete scheme for single phase flow is completed by using Eq. (4.2) to de
the closed integral of net (Gaussian) flux over the control voldgmp), which results in

Fit12j— Fic12j + Fij+y2 — Fijoy2=m. 4.3)

Flux for Dual Variable Location

If permeability assumes a cellwise constant distribution and flow variables are defi
with respect to cell vertices (Fig. 1), then flux and pressure continuity across a con
volume interface is immediately satisfied since the control volume interfaces lie inside
cells of constant permeability. In addition, if we suppose flux and pressure continuity
imposed locally at each cell face, then the interior cell face flux contributions will canc
in the Gaussian integral over the net control volume. A brief summary of the dual varia
location scheme follows below; details are presented in [3, 7, 16].

The position vector = (x, y) assumes a cellwise bilinear variation, with each quadr
lateral cell mapped to a unit cell. Since permeabilities are cellwise constant, evaluatio
transform derivatives at the respective cell centers leads to general t&€nsgsg 11,» that
are also cellwise constant, and consequently the pressure can also assume a cellwise b
variation with local derivatives
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O =(1-nMAe @itz + 1A Pij1/2 11, D= (1—&E)A,Pi 1172+ EA,Dit1j11/2,
(4.4)

whered; ; is the discrete vertex pressuréiatj ) and 0< £, 7 < larethelocal celltransform
coordinates and Di1/2, ) =DPit1,j — Pijy Ay Dijr12=DPij11— Pij.

The four discrete directional cell fluxes of Eq. (4.1) are derived by integrating Eq. (3
between cell centers and edge midpoints corresponding to half cell intervals i, fiye
coordinate system. For example the south figschas anpintegration interval o8Q¢ =
[0, 1/2]. Replacing(€, 7) in the integrands witlprescribedconstant valueg, 1) yields a
family of symmetric positive definite schemes [3], with, e.g., south flux

FS+1/2,j+1/2 () = - 5 Taa+1/z.j+1/2 (a- ﬁ)A%‘ i +1/2,j + ﬁA§ D +1/2,j +1)

(A @i jr172+ Ay Pigsj+1/2)
2 b

+ Tah+1/2.j+1/2 (4.5)
and the general tensor coefficients given by Eq. (3.5) are now piecewise constant over
cell. A Galerkin scheme is obtained b= = 1/3. Further details and properties are giver
in[3,7, 16].

Algebraic Flux Continuity for Control-Volume Distributed Schemes

When rock and flow variables are chosen to be control volume distributed (i.e., p¢
distributed or cell centered; Fig. 2), the tensor permeability can be discontinuous acros
control volume faces and flux continuity must be enforced. A family of algebraically fl
continuous schemes for the two-dimensional full tensor equation Eq. (3.3) is defined ir
10] for either a point-distributed or cell-centered discretization and an equivalent schq
is given independently, in [11-13]. In summary, four auxiliary continuous control volun
interface pressure@y, ¢s, ok, dw) are introduced per cell, allowing pressure to var
linearly over each subcell triangle (Fig. 2c). Piecewise constant fluxes are then calcul
with respect to each subcell triangular basis function, and the flux continuity constraini

—(Taa®z + Tap®7)|§ = — (Taa®z + Tan®5) |3,
—(Taa®z + Tab®) [ = —(Taa®z + Tav®5) IR,
—(Tab®z + Tob®7)[2 = — (Tan®Pz + Too i) [2
—(Tap®z + Too @) iy = — (Tav®z + Ton Py

(4.6)

define a linear system of equations for the four interface pressures in terms of the
locally numbered cell vertex pressui@s,, ®,, @3, ®4), whered; j = @4 andFl}, denotes
interface fluxI" at quadrature locatios and state at volumé. The actual position of
along each cell edge defines the family [10]. Thus each cell face pressure can be expr
as a linear combination of the cell vertex pressures and the four algebraically contint
normal fluxes take the form

1 4
FU(GJ):—EZ,B‘L’QJL, o=(N,S E,W), (4.7)
L=1

whereo indicates the local normal flux location. A full description of the schemes togett
with the procedure for obtaining thgf coefficients is given in [10].
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Consistent Flux Factorization
As in the case of dual location, each control volume face flux can also be expressed
linear combination of cell edge potential differences with
1
Fo(®)= =5 (o7 As Pisaa +03 Ay Pisajirz+ a3 Ay Pijryz+0F Mg Pivayajn)
(4.8)

where thex{ coefficients are determined by equating the respective coefficients of the
vertex potentials in Egs. (4.7) and (4.8), leading to

1 0 -1 0 oy P
1 -1 0 O© a3 B2
= . (4.9)
0O 1 O 1 of B3
0O 0 1 -1 g B3
Upon summation of the equations of (4.9),
4
> B =0, (4.10)
L=1

which demonstrates that the system is linearly dependent due to the zero flux idel
which holds for constant potential. As a consequencexth@re only defined up to an
additive constant and therefore each normal flux can be written as a leading two-point
associated with the corresponding adjacent cell edge together with cross terms. For exa
with respect to edge+ 1/2, j and south flux (Fig. 2b), we can choagg= 0 so that

1
Feinzine(®)=—5 (0P A Dit1ya ) + 50y Pist jr1/2 + 50, Dij112). (4.11)

In the case of a diagonal tensor with cell face midpoint quadrature [10] each directic
flux will reduce to the product of a coefficient (given by the harmonic mean of the loc
leading directional canonical tensor coefficients, 8gis = 2Taal 3 Taal3/(Taals + Taal%))
multiplying the local potential difference. Therefore consistency of flux in Eq. (4.1
demands that for zero cross-flow gradient (X6, 11, j+1/2 = A, i j+1/2 = 0)041S be equal

to the harmonic coefficient. The geometry metric components of tdhsan either be cal-
culated at each cell edge continuity point or be conveniently approximated by cell cente
values. The consistent factorization for the particular scheme and quadrature maint
be deduced directly from the algebraic system; using Eq. (4.9) it follows that

oaf =~ (B +55). (4.12)
which holds for any control volume geometry. By expressing the cross-flow coefficients
a3=C%+wS/2,  aj=("-wS/2 (4.13)
using the identityA, Ag i 12 j11/2 = A Ay Pita/2,j+1/2 and Egs. (4.11), (4.13), the most
general form of a consistent flux Stcan be expressed as

1
Fsiziaa(® =—3 (af((l — XD AeDit1/2 + x5A:Dit1/2j41)

cS
+ E(An¢i+l,j+1/2+Anq>i.j+1/2)>, (4.14)
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where x S=wS/2a3. By flux consistency (and Eq. (4.13))° = (a3 +a3) represents a
directionally weighted mean approximation of the cross flow coefficlgat Comparing
Egs. (4.5) and (4.14) it follows that the normal fluxes of the two formulations have
analogous discrete form, the difference being in the actual discrete approximation of the
tensor coefficients, where the control volume distributed scheme coeffigipetsibody a
full tensor generalization of the harmonic mean defined via Eq. (4.6), while the dual varic
scheme has cellwise constant coefficients; cf. Eq. (4.5). A closely related formulation
brings the above two formulations together in a locally homogenized sense is prese
in [16], and the relationship between the above two formulations is examined in [10]
spatially constant coefficients.

Fully Implicit Coupled Formulation

Afully implicitformulation [1, 5, 6] is employed to solve Eq. (2.1), which is approximate:
in the discrete locally conservative integral form (per ph¥éy

(SEH—SE )T| j +At()tP( ‘+1/21)F|+1/21(CD +H ) — ( P 1/ZJ)Fi—l/Z,j((I)nJrl)

+)»p(SP J+1/2) Fi,j+1/2(cbn+1) —Ap ( n+l )F| i— 1/2(q>n+1)) AtMpl‘j, (415)

i-1/2

wherer; is the control volume an#i 1,5 j is defined by Eq. (4.2). The oil phase saturatior
is eliminated via Eg. (2.2) and the system is solved simultaneouslysfo). The hy-
perbolic flux contribution is upwinded according to the local wave direction, e.g. based
AP(SPH/ZJ)HH/Q j (@"*1) across control volume fagé + 1/2, j) for a positive outward

n+1 n+1. n+1 n+1
wave with respect to facg +1/2, j), P12, = SR, ; otherwisesp” o =SSPy

5. INCREASED SUPPORT AND LOSS OF M-MATRICES WITH FULL
TENSOR APPROXIMATION

The above full tensor schemes enlarge the discrete matrix from five to nine row entrie
2-D (3-D full tensors generally increase the support of the scheme from 7 to 19 or 27 en
per row). In addition, a discretill tensor matrix can lose diagonal dominance, as discuss
below. Without loss of generality of the method, we shall focus on the pressure equa
matrix in two dimensions and note that such a matrix arises directly within a sequenti
implicit, IMPES, or single-phase system.

M-Matrix

A matrix with entriesg; j is an M-matrix if
a;>0, Vi
a,j <0, Vi, j, i1 #]

Zaj,jzo, Vi
i

with strict inequality for at least one row and the matrix is irreducible [2, 24]. Referrir
to the matrix of Eq. (A1.2) resulting from the dual variable scheme—cf. Eq. (4.5)—t
conditions of Eqg. (5.1) can be shown to be satisfied [3, 10] if in each cell

(5.1)

min(Taaa Tbb) > ﬁ(Taa‘i‘ Tab) > |Tab| (5-2)
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and a Dirichlet boundary condition for pressure is applied at least at one point (ensu
strict inequality for one row). In this case the approximation inherits a discrete maximi
principle. In addition it can be shown that Eq. (5.2) is precisely the condition for positi
transmissibility [22].

However, the inequality of Eq. (5.2) is a sufficient condition for ellipticity and only in
cludes the subset of elliptic full tensors where the magnitude of the cross-flow coeffici
does not exceed the minimum diagonal tensor coefficient. Consequently nine-node apy
imations of the full tensor equation cannot yield M-matrices for all ellifiit tensors.
However, the additional cross terms involvingn Eq. A1.2 serve to generate a family of
nine-point schemes, even for a diagonal tensor, that enhance diagonal dominance of
tensor scheme for any nonzero valug ¢fhusy ) above. Conversely if = 0 the inequality
of Eq. (5.2) is never satisfied fanyfull tensor.

Note that while the above approximations of the full tensor pressure equation are s
metric positive definite [3], they are also conditionally diagonally dominant, and whi
coupled with the nonsymmetric diagonally dominant upwind approximation for the ¢
sentially hyperbolic phase equations, the resulting enlarged block Jacobian bandwid!
the fully implicit full tensor system Eq. (4.15) is neither symmetric positive definite ne
diagonally dominant, in contrast to the standard diagonal tensor fully implicit formulatic
which maintains a smaller Jacobian bandwidth with an underlying diagonal dominanc

6. OPERATOR SPLITTING AND SPLITTING AT THE MATRIX LEVEL

In this section and Section 7, strategies for designing full tensor schemes that only
on standard size matrix inversion (i.e., 5 row entries in 2-D, 7 in 3-D) are considered.
strategies hinge upon calculation of the additional terms at the old time or iterate level.
gives rise to the notion of a semi-implicit scheme, where “five-point” entries are impli
and the remainder are explicit.

Let the fully implicit nine-point discretization matrix be denotedA¥’ and the discrete
solution by®y, such that

A®®, =m. (6.1)
We shall illustrate schemes in two dimensions (the principle extends to three dimens
directly) that involve decomposition of the maté® into a pentadiagonal matri&® and
a residual matrixA©®—> where
A® = A® L A5 (6.2)
and that give rise to semi-implicit schemes of the form

AP L ACD PN —m, (6.3)

Matrix Level Splitting

First we shall consider a scheme that is derived directly from splitting at the matrix lev
Such a splitting involves calculating all terms belonging to the standard pentadiagonal f
at time level + 1; while the remaining entries are calculated at time lay#he respective



FLUX SPLIT FULL TENSOR DISCRETIZATION OPERATORS 11

split matrices are denoted symbolically by

9
0 A%, O
9 9 9
A® = | A% AT AR (6.4a)

o A%, o0

&) ©
A1 0 Al
A5 _ AQ _ AG) _ 0 0 0 . (6.4b)
9 9
A®, -1 O i(+>1,j—l

Stability of Matrix Splitting with Discrete Discontinuous Coefficients

If the condition of Eq. (5.2) holds for all cells, thel®is an M-matrix and Eq. (6.4)
defines a regular splitting [24] of the matrix and thus the scheme of Eq. (6.3) is stable
general discrete coefficients. Therefore whéf is an M-matrix, the reduced matrik®
defines a robust preconditioner for inverting the full bandwidth ma¥& via successive
iteration of Eq. (6.3 ) to convergence.

Loss of Discrete Stability

A corollary is that a nine-point diagonal tensor approximation enhances preconditic
stability when a full tensor is present; cf. Section 5. Conversely, the scheme define
n = 0is unconditionally nondiagonally dominant for any full tensor since condition (5.2)
violated andA® is not an M-matrix. The splitting for this case is illustrated in Appendix A:
for the dual variable scheme defined above where the following are shown:

(a) For variable coefficients, depending on the definition of the discrete operator,
cross terms can add additional contributions to the standard five-point scheme coeffic
which can either enhance or destroy diagonal dominance of the resulting pentadiag
preconditioning matrix Eq. (6.4a), depending on the sign of the term in Eq. (A2.1). Tt
while matrix level splitting ensures that all terms which contribute to the pentadiagonal
implicit, even the pentadiagonal mati%> cannot be shown to be an M-matrix for genera
discrete coefficients.

If Eq. (6.3) is not iterated to convergence at each time step, then irrespective
whetherA® is an M-matrix,

(b) the corresponding flux is nonconservative (Appendix A2);

(c) an O(1) error is introduced in velocity (Appendix A2).

By splitting at the flux level it is shown in Section 7 that semi-implicit schemes can
defined for evolutionary problems that avoid the additional iterations required by splitt
at the matrix level, while maintaining local conservation, consistency, and stability of
formulation.

7. GENERAL SPLIT TENSOR FLUX

We shall now construct split schemes from the flux, since as shown above, loss of
servation and zero divergence will result from any semi-implicit matrix splitting that do
not respect these properties at the flux level.
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In Section 4 we demonstrated that all of the finite volume schemes presented, inclus
those designed to maintain algebraic flux continuity, have fluxes that can be castin the
of a leading two-point flux corresponding to the diagonal tensor component together v
cross-flow terms; cf. Eq. (4.11). This observation is exploited below.

The flux is now split so as to generate a semi-implicit scheme that retains an impl
approximation of the diagonal tensor contribution and employs an explicit approximat
of all flux cross-flow terms, thereby retaining standard diagonal tensor Jacobian invers
and preserves existing simulator code design and efficiency. The splitting is illustrated
the “south” flux atS (Figs. 1b and 2b) and is defined by

S 1 1
F (<Dn+ d) ) - FS+1/21+1/2(<Dn+ ) + FS+1/21+1/2(<Dn) -

S+1/2.j+1/2

n
3+1/2|+1/2(q> ), (7'1)
where superscriptS and 2P are used to denote the respective split flux and two-poit
flux. From the above scheme formulations it follows that the leading two-point flux can
expressed as

1
2P n+1 S n+1
FS+1/zAj+1/z(q) )= _é 1Aq)l+l/2 i’ (7-2)

wherea? is defined by Eq. (4.12) for a control volume distributed scheme, or for tt
dual variable formulation, by analogy between Egs. (4.5) and (4af4), Taa.1z.12- THE
general split flux defines a new semi-implicit formulation composed of the leading two-pc
flux (Eq. (7.2)) approximated implicitly at the new+ 1 time level, and a cross-flow flux

FS+1/21+1/2(® ) - 3+1/21+1/2((D ) - a2A q>|+1 j+1/2 + ‘XSA q>| j+1/2° (73)

which is calculated explicitly at time levaland by (4.14), (7.3) yields

aP(—xSD: P10 + x50 P11 11) P (@0 1+ 891 j11/2)
2 4

(7.4)

Fully Coupled Semi-implicit Split Formulation

For mixed systems of equations such as Eq. (2.1), the semi-implicit flux can be formule
for IMPES via deferred correction [7]. A sequentially implicit formulation is another po:
sibility. Here we formulate the semi-implicit flux within a fully implicit formulation, which
leads to a fully coupled scheme that is fully implicit in saturation and fully implicit witt
respect to diagonal tensor pressure terms and explicit with respect to cross-flow pres
differences. The discrete scheme for each pliagenow written as

(spht = s, )i + At(Ap(SpT), ) FS02 (@™ @) — Ap (ST, )RSy (@M, M)

+hp(s FSa12(@™h @) —ap(sETh, ) FS_1p(@", @M) = AtMp (7.5)

I]+1/2) 1,j-1/2

and uses a spatially consistent split time level flux where, e.g.,

n+1 N+l gn S N+l N
'+1/21(<1> O =F Nu+1/21 PICA D A C S (7.6)
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and the “south” flux is given by Eq. (7.1) and the other local cell fluxes are defined
an analogous fashion. As with the conventional fully implicit system of Eq. (4.15) the
saturation is eliminated and the block system is solveddar®). Note that the upwind
split flux direction at(i +1/2, j) is now evaluated using(s’;ﬁ/zj)ﬁiyzj ("L, @M.
The new flux defined through Eq. (7.1) retains local conservation and for incompress
flow a divergence-free velocity field is also maintained (as shown below). The full ten
Jacobian band width is considerably reduced in size, from 9 to 5 row entries in 2-D, .
from 19 or even 27 to 7 row entries in 3-D. In addition to a compact standard shape diag
tensor Jacobian, an underlying diagonal dominance is recovered and thus the Jacobiar
inverted is also better conditioned, while the actual diagonal tensor coefficients are def
by consistent approximations Tq,, Ty, of EQ. (3.5).

Local Conservation, Consistency, and Stability

Discrete properties of the split flux scheme are best illustrated with respect to the pres
equation. The split flux nine-point scheme leads to the matrix decomposition

A9 =M® + XO, (7.7)
and with respect to Eqg. (6.1) the splitting can be expressed as
MO ML L XO PN = m, (7.8)
where
o M%, o0

5 5 ® (5
M® = MiZi; M7 Mg (7.9)

o MY, o

is the net discrete diagonally dominant five-point operator matrix resulting from two-po
flux contributions, while the cross-flow matrk© is defined by

) [©) )

i—Lj+1 NN+l Nilj+l
[OYNC) () ) () 9
XO=A®-M®=|x2, x% x2; |. (7.10)

Xi(?)l,jfl Xi(ﬁ)fl Xi(i)l,]‘f
The above split formulation applies to both the control volume distributed and dual variz
formulations. The dual variable formulation matrix coefficients of the diagonally domine
five-point operatoM ® and the full tensor nine-point operatdt® are definedin Egs. (A1.1)
and (A1.2), respectively; cf. Appendix Al.

For any quadrature point other thar="0, the cross-flow matrix will generally involve
nonzero entries for all nine nodes, while the M-matrix is unchanged. For spatially cons
coefficients withy = 0 the splittings of Egs. (6.4) and (7.8) produce identical matrix fac
torizations for the pressure equation; however, even in this case there is still an impo
distinction in the semi-implicit time-split flux.
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Locally Conservative Flux

Since the splitting is defined with respect to the flux, the same flux that is added to
control volume integral ati, j) is subtracted from the control volume(@t+ 1, j), which
ensures local conservation, while the net discrete representation of divergence is define
Eq. (7.8).

Error Due to Flux Splitting

The relative flux error introduced by the split flux approximation is defined by the diffe
ence between the fully implicit flux and the split flux acting on the exact solubignt).
For example, the relative error in flux normal to the control volume facg (&ig. 2b) is
defined by subtracting the split flux of Eq. (7.1) from the flux of Eq. (4.14) to yield

FSiu20e PO+ AD) = FS (@, t+ AD, O(r, 1)

_ ap(=x5Ae8Piyy2 + x5A:8Pit1y2j41) n s Bnd®ij+1/2 + ApdPit1jr1/2)
2 4 '
(7.11)

wheres®; j = & (ri j, t + At) — @(r; j, t). The discrete normal velocity error is defined by
dividing the flux error by the size of the control volume fatk The leading error is due
to the off-diagonal tensor coefficient, and dividing Eq. (7.11\hyand performing Taylor
series expansions aboBat timet yields

Vs(®(r, t + At)) — VS((r, t + At), d(r, 1))
cS 92d asyS 3

2 dlat 2 9nalat

ANAt + O(AN?, At?), (7.12)

which demonstrates that the split flux veloch4? is spatially consistent. The relative
divergence discretization error due to the flux splitting scheme is given by the differel
between the conventional and split discrete operators acting on the exact solution, viz

APD(r,t+ At) — MPd(r, t + At) — XOd(r, 1)
= XO@(r, t + At) — d(r, 1)) = AtXOPAD/AL; (7.13)

the leading divergence discretization error due to the time splitting of a full tensor sche
is therefore

XO® At & 2At Typ®@e it ~ O(AL). (7.14)

Stability

An error equation for the relative discrete solution error can be derived by subtract
Eq. (7.8) from Eq. (6.1) and using Eq. (7.7) to yield

MOt 4 XOg =0, (7.15)
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where the relative discrete solution error is defined by
e = o — " (7.16)

and is the difference between the discrete solution satisfying Eq. (6.1) and the evolutio
solution defined via Eq. (7.8). Time stepping or iteration of the scheme of Eq. (7.8) is stz
provided that the spectral radius is bounded by unity, e.g., [25], which follows if

I(ME) X = ([ = (M)A <1 (7.17)

If flux splitting is regular or weakly regular then (7.17) holds [24, 25]. In particulahSf
is diagonally dominant then the Jacobi iteration is stable with

1 —pa®), <1

whereD is the diagonal ofA®. Since(M®)~1 is a better approximate inverse thBx?,
(7.17) (0 = o0) can be expected to holdAf? is diagonally dominant. However, the scheme:
presented here are conditionally diagonally dominangfer0; cf. Eq. (5.2).

Stability in L,

Here we consider the stability of the semi-implicit or iterative scheme of Eq. (7.8)
the L, norm and perform a von Neumann analysis for the case of constant coefficient:
this case both the dual variable and flux continuous schemes can be reduced to the
discrete form [10]—cf. Eq. (A1.2)—with constant coefficients. Thus the split flux operatc
are defined by

MO M = —Too (11 — 200" + &) — Ton(@ 11, — 207 + @' L))

XOP" = Tab(q’?+1.j+1 - cDiILl,j+1 - (cDin+1,jfl - cbinfl,jfl))/z

T n n n n n (7'18)
FT (407 —2(@N g j + Py + Py + 97 _y)
R 2R S TR R cDinfl,jfl)’
whereT = 1(Taa + Top)/2 and the error equation Eq. (7.15) is rewritten as
MO = —XO¢. (7.19)

Expanding the local error as a Fourier series with comporeHtié e wherek, = 2 K1,
ko =27 K5, andK, K, are the respectivé (1) transform space wave numbers, substitutiol
in Eq. (7.18) yields
MOt = —22" e kst (T, (cosksh) — 1) + Ton(Costkeh) — 1)) (7.20)
X©Og = —a"e*EHen (2T, sin(kyh) sin(k:h) — 4T (cogkih) — 1)(costkzh) — 1))

and stability follows if|A"+1/A"| < 1. After substitution of Eq. (7.20) in Eq. (7.19) the
stability condition—cf. Eq. (7.17)—is satisfied if

Tab sin(ksh) sin(koh) + 2T (cogkih) — 1)(cogkzh) — 1) -1 (7.21)
(Taa(coskih) — 1) + Tpp(cogkah) — 1)) - '
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Expanding in terms of half angles (whefe=k;h/2, 6, =k,h/2) and rearranging, the
inequalities resulting from Eq. (7.21) are certainly satisfied if

Taatarf(61) + Toptarf(6z) + 2| Tap| tan(fy) tan(éy)
+ ((Taa + Tob) =+ 4T) tarf(61) tarf(62) > 0 (7.22)

and since) < 1/2 the coefficient of taf(6, ) tarf(6,) is non-negative. Thus omitting the latter
term, the inequality of Eq. (7.22) is still satisfied provided that the quadratic discrimine
is zero or negative, which requires trTai < TaaTpp. Therefore the family of split schemes
is unconditionally stable for constant elliptic coefficients.

Semi-implicit Time Marching or Iteration in Summary

For a standalone pressure equation Eq. (7.8) defines an iteration strategyl With
acting as an approximate inverse or preconditioneAf is an M-matrix and iteration to
convergence is performed then either the preconditioner resulting from matrix splitting
flux splitting can be employed. For a time-dependent system such as an IMPES formula
thenasin[7], Eq. (7.8) can either be similarly iterated to a prescribed convergence toler:
per time step or be used directly as a split operator to update the system at each time
Note all approaches are driven by a reduced bandwidth matrix.

However, since the above analysis has shown that the semi-implicit scheme is conserv
and consistent (introducing an er@rAt)), and stability is proven for constant coefficients,
the semi-implicit split flux scheme can be expected to produce the most efficient methoc
any formulation, effectively replacing inversion of a conditionally diagonally dominant nin
point matrix by inversion of a symmetric positive definite classical five-point M-matrix (2
by seven-point matrix operator in 3-D), and if stability problems are encountered additio
iterations can still be performed.

In this work the focal point is a fully implicit formulation; the semi-implicit operator
has been incorporated into a standard fully implicit diagonal tensor formulation, extendi
applicability to full tensors while retaining the same large time step capability and ot
requiring inversion of a standard 5-polsibck Jacobian rather than the much larger block
bandwidth nondiagonally dominant Jacobian matrix resulting from a conventional fu
implicit full tensor formulation.

8. SPLIT TENSOR FLUX ON AN UNSTRUCTURED GRID

Flux splitting can also be applied to triangular grids. While the flux split Jacobian
not reduced in size for pure triangulations, diagonal dominance is recovered due tc
split time level approximation of pressure in the flux divergence operator. Once formula
for both quadrilateral and triangular cells the method can be applied to any unstructt
grid type. Here the extension to triangular grids is outlined below. As before, focus is
cell vertex-based schemes, and both the dual variable and point-distributed scheme
considered.

Dual Variable

Assuming permeability is piecewise constant over each triangle (Fig. 3a), pressure
assume a linear variation over each triangle with
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FIG. 3. Dual variable and control volume distributed schemes, fluxes for unstructured triangular g
(a) Constant tensor per cell dual variable location. (b) Constant tensor per control volume, control volume
tributed. Dashed line is a control volume face.

D =P +E(Pr — Py) + (D3 — Py) (8.1)

and for example by Eq. (3.5), the outward normal flux approximation to the control volu
face at(S) of Fig. 3a can be written as

Fs(®) = —(Taa(®P2 — P1) + Tap(Pz — P1)). (8.2)

Point-Distributed

For the point-distributed scheme, pressure is vertex based and permeability is now p
wise constant over each control volume (Fig. 3b) and flux continuity must be enforce
before; cf. Eq. (4.6). In this case auxiliary pointwise continuous control volume face pr
sures are introduced & N, E, as indicated in Fig. 3b; cf. [6]. By analogy with Eq. (4.6),
pressure can now assume a linear variation over the resulting subcell triangles, and
mally resolved piecewise constant fluxes can be calculated at each control volume fac
we adopt notation analogous to that of Eq. (4.6), the flux continuity conditioBsNf E
lead to three equations for the unknown interface pressures,

_(Taad>§ + Tabq>r7)|% = _(Taaq)g + Tabq>r7)|%

—(Tap®z + Tob®5)|2 = —(Tap®z + Top®3)I2 (8.3)

—(Tap®z + Top®) [y = —(Taa®z + Tap®) I}
enabling them to be expressed as a linear combination of the cell vertex pressures belo
to the triangle. Therefore each normal flux can then be expressed as

1 3

Fo(@) =—3 éﬂfm, o=(SN,E),
and as before (Eq. (4.10)), for a constant potential there is zero flux)@jus 7 =0,
from which it follows that general form of the normal flux is

Fs(®) = —(ap(®2 — ®1) + a5(P3 — ®1)), (8.4)

where the coefficients ensure algebraic continuity; cf. Eq. (8.3). By consistency of nor
flux, the coefficientr; will reduce to the harmonic mean of the local leading canonic
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tensor coefficients with respect to the triangle control volume faceyarsda directionally
weighted average approximation of the cross-flow coefficient.

Thus as in the case of quadrilateral cells, each local control-volume normal flux car
expressed as the sum of a leading two-point flux (with coefficigabove) together with a
cross term. Therefore the split flux definition of Eq. (7.1) can be applied to both triangu
formulations, and the resulting normal split flux at locat®takes the form

FR@M, 0N = — (a$(#D" - 01') + o (0] — 0f)). ®5)
Finally the unstructured semi-implicit multiphase flow scheme can now be defined by
Nedge
(B —sp)mi + At D> Ap(spl YRS (@™, ") = AtMp,
k=1

where summation is over all edgegk, i) passing through théth grid vertex, the net
edge-based flux is composed of adjacent triangle and/or quadrilateral cell edge spilit fl
according to each local grid cell type. As before, cell edge saturations are upwinded,
direction being a function of the local edge split flux.

9. RESULTS

The new full tensor split flux semi-implicit formulation is compared with the standal
fully implicit diagonal and full tensor formulations. The water saturation field results a
illustrated by contour plots ranging over 10 intervals and are displayed at time 0.5 p
volumes injected and no flow is assumed at all boundaries unless stated otherwise.

All solutions are computed with the semi-implicit split flux scheme, and generally lar
time steps are taken (average CFL of 12) while overall computation time is reduced w
compared to a fully implicit full tensor formulation with a conventional full Jacobial
inversion.

Case 1: Non-orthogonal Grid

In order to demonstrate grid effects, a nonorthogonal quadrilateral grid is employed
simulation of flow in a homogeneous isotropic reservoir, the grid is shown in Fig. 4a. .
injector and producer are placed at the bottom left and top right hand corners of a sq
domain (quarter five-spot pattern). Nonorthogonality introduces a full tensor (cf. Eq. (3.
Standard simulators only allow diagonal tensor coefficients and include geometry eff
by modifying these coefficients (called transmissibility modifiers, and multiply porosity |
cell volume). The saturation field computed by a standard implicit scheme with diago
tensor (corner-point) geometry, employing transmissibility modifiers, is shown in Fig. -
The reference solution, computed on a uniformx286 Cartesian grid, is shown in Fig. 4c
and is symmetric abowt= x. There is a large discrepancy between the results; due to t
O(1) error in flux that is incurred when using the diagonal tensor on a nonorthogonal g
the diagonal tensor approximation introduces a form of local grid orientation that causes
front to follow the curvature of the grid and leads to early breakthrough at the producing w
In contrast, the results from the full tensor schemes, using full matrix inversion (Fig. 4d) :
using the split tensor operator (Fig. 4e), are in excellent agreement and compare favol
with the uniform grid result, demonstrating the need for a full tensor. The split flux opera
reduces the difference in computation time between the full tensor (full matrix inverse) «
diagonal tensor simulations by 60% for this case.
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FIG. 4. Saturation contours and non-orthogonal grid. (a) Nonorthogonal grid. (b) Standard diagonal te
saturation field on nonorthogonal grid. (c) Diagonal tensor saturation field on Cartesian grid. (d) Full tensor-
matrix saturation field. (e) Full tensor—split flux saturation field.

Case 2: Homogeneous Full Tensor

The second case involves an anisotropic diagonal homogeneous tensor with prin
axes oriented at 450 the reservoir domain. The dominant principal permeability directic
is parallel toy =X, creating a full tensor with respect to the 8@0 Cartesian grid. The
normalized full tensor has componerfs, =1, Ky, =1, K5, =0.82. Quarter five-spot
boundary conditions are imposed as in Case 1. The results for this case are shov
time 0.4 pv. The standard diagonal tensor simulation omits cross terms and the sature
contours are shown in Fig. 5a. In contrast, the effect of the full tensor is shown in Fig 5b,
strong cross flow effect due to the dominant permeability that is parallel to the primary fl
gradient is apparent from the elongated saturation front. Both of the full tensor scher
using full matrix inversion (Fig. 5b) and using the split tensor operator (Fig. 5¢), are ag
in excellent agreement, and the split scheme reduces the additional time required fol
tensor simulation with full matrix inversion by nearly 86%.

A similar observation and saving is obtained for a principal axes orientatiod it to
the reservoir domain, where now the primary flow gradient is orthogonal to the domin
permeability direction, causing a flattening of the front. Both of the full tensor schem
using full matrix inversion (Fig. 5d), and using the split tensor operator (Fig. 5e), ag
sustain excellent agreement.

Case 3: Heterogeneous Cross Bed

This case involves an anisotropic heterogeneous domain with a 30% correlation le|
along the horizontal principal axis (Fig. 6a) and average anisotropy ratio of 10. The princ
axes are oriented at 48 the reservoir domain, and the dominant principal permeability
rection is tangential tg = X, producing a heterogeneous full tensor permeability field wit
respect to the 3@ 30 Cartesian grid. Fluid is injected along the entire left-hand bounda
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FIG. 5. Saturation contours for homogeneous full tensors. (a) Diagonal tensor coefficient saturation fi
(b) Full tensor-full matrix. (c) Full tensor-split flux. (b, c) Principal axes max diagonal aligned with flow gradier
(d) Full tensor-full matrix. (e) Full tensor-split flux. (d, €) Principal axes max diagonal orthogonal to flow gradie

Wyad

FIG. 6. Saturation contours and heterogeneous full tensor. (a) Permeability field. (b) Diagonal tensor co
cient saturation field. (c) Full tensor—full matrix saturation field. (d) Full tensor—split flux saturation field.
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and produced at the right-hand boundary. Full tensor scheme results computed with full
trix inversion and using the split tensor operator are shown in Figs. 6¢ and 6d, respecti
and are in excellent agreement. The full tensor cross bed induces angled channeling «
front, demonstrating the influence of the underlying dominant principal tensor coefficie
The standard simulator diagonal tensor result (Fig. 6b) shows a completely different
havior, with channeling that is parallel to the horizontal and later breakthrough of the fr
at the completed producing well. This result further illustrates the effect of the O(1) er
in flux incurred by commercial simulators when neglecting critical off-diagonal terms
the tensor (cf. Eq. (3.5)). The split tensor scheme reduces the additional computation
required by full tensor simulation by 45% for this case.

Case 4: Unstructured Grid, Cross Bed

This case also involves an anisotropic heterogeneous domain, with dominant princ
direction parallel toy = x and oriented at 45relative to the grid, creating a cross-bedde
region with a full heterogeneous tensor. Quarter five-spot boundary conditions are imp«
as in Case 1. The grid is defined by an unstructured Delaunay triangulation of the don
and a permeability tensor is assigned to each cell vertex control volume, i.e., point distrib
(Fig. 7a). Results from the full tensor schemes computed with full matrix inversion and
split tensor operator are shown in Figs. 7c and 7d, respectively, and are in very g
agreement. A comparison with the diagonal tensor result of Fig. 7b shows the strong e
of the cross flow induced by the dominant principal permeability direction, paraljektr.

In this case the domain is entirely triangulated and is a worst case for the method sinc

a b
3500
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0 75 10 128 % 1%
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T R s w s w16 TTE w5 W s w1
FIG. 7. Saturation contours, heterogeneous full tensor, and unstructured grid. (a) Permeability field
unstructured control volumes. (b) Diagonal tensor coefficient saturation field. (c) Full tensor—full matrix satura
field. (d) Full tensor—split flux saturation field.
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=

FIG. 8. Saturation contours and mixed cell unstructured grid. (a) Unstructured quadrilateral—triangular
(b) Diagonal tensor coefficient saturation field. (c) Full tensor—full matrix saturation field. (d) Full tensor—s;
flux saturation field.

.

split Jacobian is not reduced in size. However, improvement in efficiency is still obtain
with a reduction in additional full tensor computation time of 48%, which is attributed
the inherent diagonal dominance due to the split flux.

Case 5: Unstructured Quadrilateral Triangular Grid

The benefit of the completely general mixed cell scheme is illustrated by this exam
The grid shown in Fig. 8a is composed of two quadrilateral domains P and 11x 13
joined by a triangular interface, and is representative of local refinement, or a faulted reg
The constant homogeneous full tensor of Case 2 is imposed on the domain and the pro
is identical to Case 2 except for the use of an unstructured curvilinear grid instead of
Cartesian grid, which gives rise to an additional source of a full tensor.

Results are compared at the same output time as Case 2. The two-point flux sck
generates a highly distorted solution (Fig. 8b), due to the O(1) error in flux caused
neglecting the strong cross-flow terms. In addition to the generally incorrect shock frc
the additional sensitivity due to the change in mesh type from quadrilateral to triangule
also clear in the solution.

In contrast, the results from the full tensor schemes, using full matrix inversion (Fig. 8
and using the split tensor operator (Fig. 8d), are in excellent agreement and compare f
ably with the uniform grid result of Figs. 5b and 5c¢, and show that the split operator ¢
handle mixed element grids. The split flux operator reduces the difference in computa
time between the full tensor (full matrix inverse) and diagonal tensor simulations by 8
for this case.
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FIG. 9. Relative error convergence of saturation and pressure with decreasing time step. (a) L2 conver
of potential with decreasing time step. (b) L1 convergence of saturation with decreasing time step.

Relative Convergence

The full tensor discretization schemes employed here have been shown to provide
vergent results under mesh refinement studies for problems with discontinuous coeffic
[10]. The split flux scheme has been shown (cf. Section 7) to have a discretization errc
O(At) relative to a fully implicit full tensor flux. Results of a convergence study of relati
error between the fully implicit scheme and the split scheme are presented in Fig. 9.
solutions for Case 2 above are recomputed (four times) by both schemes, the maxil
time step is halved for each successive computation, and the differences in the convent
and split flux pressure and saturation fields are computed ihttzd L, norms, respec-
tively. The charts of Fig. 9 indicate that the convergence rates are approxinaataly),
confirming the estimate of Egs. (7.12) and (7.14), and that the split flux scheme is there
consistent and convergent.

10. CONCLUSIONS

A time split full tensor flux operator is developed and incorporated into a standard ft
implicit diagonal tensor formulation, extending applicability to full tensors on structur:
and unstructured grids.

Two full tensor finite volume formulations are considered: dual variable and (flux cc
tinuous) point-distributed. A relationship is established between the discrete forms
locally homogenized sense, and it is shown that the directional (normal) flux of both f
mulations can be written as a leading two-point flux together with terms that approxim
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Test Case | Fully Implicit Fully Implicit Semi Implicit
No. Diagonal Tensor Full Tensor Split Flux
1 1 1.52 1.21
2 1 1.65 1.13
3 1 1.32 1.17
4 1 1.3 1.15
5 1 1.47 1.05

FIG. 10. Computation time: performance relative to fully implicit diagonal tensor simulation.

cross flow. This observation enables a general definition of split flux to be applied to b
formulations.

The resulting time split full tensor flux operators enable any diagonal tensor formulat
(from single phase to fully implicit) to be extended to a full tensor formulation whil
retaining diagonal tensor Jacobian inversion at each time step.

While operator splitting can also be defined at the matrix level, it is shown that wh
implemented as a semi-implicit scheme, flux splitting retains important discrete proper
including local conservation and convergence that are lost by matrix splitting. It is sho
that flux splitting is consistent and has a relative erro©gi\t), which is confirmed by a
convergence study (Fig. 10). The benefits of split tensor operators for multiphase flow
as follows:

(a) A spatially consistent full tensor flux is obtained while only requiring inversio
of a diagonal tensor Jacobian, thus reducing computational requirements. For quadrila
grids matrix entries reduce from nine to five per row in two dimensions.

(b) In addition to considerably reducing the size of the full tensor Jacobian bandwi
for quadrilateral grids, flux splitting ensures that the underlying diagonal dominance
recovered within the implicit operator block Jacobian for any formulation, on both structul
and unstructured grids, in contrast to implicit full tensor Jacobian matrices, which have m
larger bandwidths and are at best conditionally diagonally dominant.

(c) The pressure matrix to be inverted in the case of IMPES, sequentially implicit,
single-phase flow formulations is always a symmetric positive definite M-matrix for bo
structured and unstructured grids.

(d) Implementation of full tensor operators is simplified with all standard diagonal te
sor Jacobian assembly remaining unchanged and entirely cell edge based for both struc
and unstructured grids. Parallel Jacobian issues are also simplified.

(e) The split flux operator method produces results comparable to those of full ma
inversion, and both methods remove the O(1) error in flux that is introduced by the stanc
diagonal tensor formulation commonly employed in many existing simulators.

(f) The split operator method reduces the difference in computation time betwe
full and diagonal tensofully implicit simulations, usually by over 50% for cases testec
while retaining large (high CFL) time steps that are typical of fully implicit simula
tion.
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(g) A Fourier stability analysis demonstrates unconditional stability of the sen
implicit family of schemes for a spatially constant elliptic full tensor.

(h) In 3-D much greater Jacobian reduction is obtained, for brick cells (19to 7 or e\
27 to 7) and further gains in efficiency are anticipated.

() The method is readily applicable to analogous mixed systems of partial differen
equations such as the incompressible Euler and Navier—Stokes equations which also in
solving a pressure equation.

APPENDIX Al: MATRIX ENTRIES

The respective dual variable reduced five node M-matrix entries are given by

Mi(i)l,J = (Taa+1/21+1/2 + Taa+1/21 1/2)/ 2,
Mi(f)lJ = (Taa vaine T Taali ) 1/2)/2
Myt = =Ttz one + oz jone) /2 (A1.1)
Ivli(,si)fl = (Tbh+1/2| 12 T Thoo ~1/2,j- 1/2)/2
MT = (M1 + M+ MT, + M)

and the corresponding nine-node matrix is given by

9
A|+1 +1 = Tab+1/2 |+1/z/2 (Taa 1/2,+1/2 + Tbh+1/2 H»l/Z)

)
Ai -1j-1~= Tah ~1/2,j- 1/2/2 (Taa ~1/2,j-1/2 +Tbh —1/2,j— 1/2)

N (Al.2a)
Ai—l,j+1 = Tah —1/2,j+1/2/2 - E (Taa ~1/2.j+1/2 + Tbh—l/?.j+1/2)
) n
Ai+l,j—l = Tah+1/2.j—l/2/2 - 5 (Taa+1/2.j—l/2 + Tbh+1/2.171/2) ’
© Q) n
Ai+1,j = M|+1 i + 5 (Taa+1/2.j+1/2 + Tbh+1/2,1+1/2 + Taa+l/2.j—1/2 + Tbh+1/2,jfl/2)
© ® n
Ai—l,j = Mi—l,j + 5 (Taafl/z.jn/z + Tbh—1/2,1+1/2 + Taa—l/z.j—l/z + Tbh—l/Z,J—l/Z)
(A1.2b)

) (5)
Ai,j+1 = M ij+1 + 5 2 (Taa+1/z j+1/2 + Tbh+1/2 i+1/2 + Taa ~1/2,j+1/2 + Tbh 1/21+1/2)

© _m®
Ai,j—l - MI -1 + Taa+1/z,,-_1/z + Tbh+1/2,j-1/2 + Taa—l/z,j—l/z + Tbh—l/z.j—l/z)’

3

1
(9) (5)
A M 2 (_Tah+1/2‘|+1/2 - Tab71/z,171/z + Tab,1/2,1+1/2 + Tab+1/z.171/2)

n
- E (Taa+1/zj+1/2 + Tbh+1/zj+1/2 + Taa+1/zj71/2 + Tbh+1/zj71/2

+ Taa,l/z,jﬂ/z + Tbh—1/2,1+1/2 + Taafl/z,jfl/Z + Tbhfl/z,j—l/z)‘ (Al.2c)
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APPENDIX A2: MATRIX LEVEL SPLITTING

Loss of the Pentadiagonal M-Matrix

The splitting is illustrated for the simplest member scheme defined above with As
can be seen from Eq. (A1.2), depending on the definition of the discrete operator, the c
terms can add additional contributions to the original five-point scheme coefficients. In'
case for variable coefficients such that

(_Tab+1/2,j+1/z - Tah—l/z.j—l/z + Tﬁb ~1/2.j+1/2 + Tab+1/zAj71/2) #0 (A2.1)

an additional term is added to the diagonal, which can either enhance or destroy diag
dominance of the resulting pentadiagonal matrix (Eq. (6.4a)) depending on the sign of
termin Eqg. (A2.1). Thus while matrix level splitting ensures that all terms which contribt
to the pentadiagonal are implicit, in general an M-matrix is not obtained.

Loss of Conservation Due to Matrix Splitting

The flux that is consistent with the above matrix splitting rule of Section 6 involves
implicit calculation of all terms that contribute to the five-point stencil at time lavell,
while other terms (cf. Eq. (6.4b)) are calculated explicitly at time levélgain using the
dual variable scheme for illustration, the matrix level splitting leads to theRlakcontrol
volume faceS of Fig. 2b, given by

'fs((an’ (Dn) == {Taaﬂ/z,m/z ((1 - 77)( Inillj - q>|nj+1) + 77(¢?+1,j+1 - (banJrl))

+Tabnsns (@, — oY) -|-2(<I>in+1,j+1 — o], ))] % (A2.2)

However, by the same rule, for the equation &t1, j, the flux corresponding to the same
control-volume face 2 that is subtracted from the 1, j equation must take the form

— 1 — 1 1 - 1
Fs(q)n+ > <Dn) = - \‘Taa+l/2,j+l/2 ((1 —n) (q>ini1,i - q>|nJJr ) + n(qun-tl.H-l - q)lnj))

(A2.3)

+ Tah +1/2,+1/2 2 2

(D) — @) + (P17 41 — <I>Piij))] 1
and the net sum of outward normal fluxes with respect, foforms the discrete split
approximation of divergence defined by Eq. (6.3). However, it is clear that the fluxes
Egs. (A2.2) and (A2.3) are unequal due to the differences in time level of the cross-f
contributions, and consequently local conservation is lost.

Error Due to Matrix Splitting

The leading error introduced in the normal flux by directly splitting the matrix is define
by subtracting the flux of Eq. (A2.2) from the flux of Eq. (4.14) witg(®"*1) to yield

8Pit1j41

Fs(@") — Fg(@™™, @") = —Tapn,1 110 R (A2.4)
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wheres®; j = <I>i”fjrl - @ﬂj . The discrete normal velocity error is defined as before, dividin
the flux error by the size of the control volume faaé. The leading error is due to the
off-diagonal tensor coefficient, and upon substitution of the exact solution in Eq. (A2.
dividing by Al and performing Taylor series expansions akf®at timet

9P At _

Vs(@(r, t 4+ At)) — Vg(D(r, t + At), d(1)) = ~Tate e g 5] ¥ O (A25)

Therefore the semi-implicit velocity field will have an O(1) error. While for spatially con:
tant coefficients the net error will cancel with respect to the divergence—cf. Eq. (6.3)—
multiphase flow, even this error will appear in the discrete local conservation law fluxes
the saturation equations.
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